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The Symbol Grounding Problem

* There has been much discussion recently about the scope and limits of purely symbolic models of
the mind and about the proper role of connectionism in cognitive modeling. This paper describes
the “symbol grounding problem™: How can the semantic interpretation of a formal symbol
system be made intrinsic to the system, rather than just parasitic on the meanings in our
heads? How can the meanings of the meaningless symbol tokens, manipulated solely on the basis
of their (arbitrary) shapes, be grounded in anything but other meaningless symbols? The problem is
analogous to trying to learn Chinese from a Chinese/Chinese dictionary alone. A candidate
solution is sketched: Symbolic representations must be grounded bottom-up in nonsymbolic
representations of two kinds: (1) iconic representations, which are analogs of the proximal sensory
projections of distal objects and events, and (2) categorical representations, which are learned and
innate feature detectors that pick out the invariant teatures ot object and event categories trom their
sensory projections. Elementary symbols are the names of these object and event categories,
assigned on the basis of their (nonsymbolic) categorical representations. Higher-order (3) symbolic
representations, grounded in these elementary symbols, consist of symbol strings describing
category membership relations (e.g. "'An X is a Y that is Z’).

Stevan Harnad: The Symbol Gounding Problem, Physica D: Nonlinear Phenomena, Volume 42, Issues 1—3, June 1990, Pages 539-546



The Symbol Grounding Problem

« Gonnectionism is one natural candidate for the mechanism that learns the invariant features
underlying categorical representations, thereby connecting names to the proximal projections of the
distal objects they stand for. In this way connectionism can be seen as a complementary component
in a hybrid nonsymbolic/symbolic model ot the mind, rather than a rival to purely symbolic
modeling. Such a hybrid model would not have an autonomous symbolic ‘module,” however; the
symbolic functions would emerge as an intrinsically “dedicated” symbol system as a consequence of
the bottom-up grounding of categories' names in their sensory representations. Symbol
manipulation would be governed not just by the arbitrary shapes of the symbol tokens, hut by
the nonarbitrary shapes of the icons and category invariants in which they are grounded.

Stevan Harnad: The Symbol Gounding Problem, Physica D: Nonlinear Phenomena, Volume 42, Issues 1—3, June 1990, Pages 539-546
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Problems with Neural Networks

* Opacity (black box)

* Huge training set

* Ditticult incremental learning
* Ditticulties in compositionality

* Ditticulties in analogic reasoning



An Intermediate Geometric Level of
Representation
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A Conceptual Space CS (Gardenfors, 2000) is a metric
space whose dimensions are related to sensory based
quantities (Color, pitch, spatial coordinates, etc.).

Dimensions do not depend on any specitic linguistic
description.

A percept is a point in CS.

Convex shapes as basic concepts

Conceptual Spaces

PCONCEPTUAL
-SPACES

PETER GARDENFORS

THE GEOMETRY OF MEANING

SEMANTICS BASED ON CONCEPTUAL SPACES
PETER GARDENFORS
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The Golor Spindle
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Figure 7 Predicting the Character of After Images.



A Psychophysical Investigation of Vowel Formants

GRANT FAIRBANKS

PATTI GRUBB

Although acoustic vowels are specified
by combinations of formant frequen-
cies, it 1s commonly understood that
these frequencies vary considerably
from utterance to utterance. The in-
vestigations of such wvariations have
provided wuseful Information about
individual differences in speech and
about the range of vowel approxi-
mations 1 the speech attempts that 2
listener or a voice-operated device must
be prepared to accept. The experiment
reported here, however, has procceded
in a different direcrion. It has taken for
its main purpose the study of the form-
ant structure of vowel samples that
mcet high standards of identifiability
and judged representativeness under
controlled laboratory conditions.

may be produced without ambiguity in
the steady state. The speakers who fur-
nished samples were seven men, profes-
sors from the Department of Speech at
the University of Illinois, ranging in age
from 34 ro 57 years with a2 median age
of 43 ycars, All had been teachers for
many years, wete experienced speakers
and habitnal users of the (zeneral
American dialect. About one week be-
fore formal procedure in the Jaboratory
a copy of the following statement was
given to each speaker and discussed with
him. It 15 quoted in full because it ex-
plains the general rationale of the prob-
lem.

Fxplanation of the Problem for Speakers

T'his ex.tperiment is concerned wicth nine
vowels nf the General American dialect

Vowel Space
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Musical Pitch

Psychological Review

VOLUME 89 NUMBER 4 JULY 1982
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Geometrical Approximations to the Structure of Musical Pitch

«Q

Roger N, Shepard
Stanford University

'Rectilinear scales of pitch can account for the similarity of tones close together
in frequency but not for the heightened relations at special intervals, such as the
octave or perfect fifth, that arise when the tones are interpreted musically. In-
creasingly adequate accounts of musical pitch are provided by increasingly gen-
cralized, geometrically regular helical structures: a simple helix, a double helix,
and a double helix wound around a torus in four dimensions or around a higher
order helical cylinder in five dimensions. A two-dimensional “‘melodic map™ of
these double-helical structures provides for optimally compact representations
of musical scales and melodies. A two-dimensional ‘“harmonic map,” obtained
by an affine transformation of the melodic map, provides for optimally compact
representations of chords and harmonic relations; moreover, it is isomorphic to
the toroidal structure that Krumhansl and Kessler (1982) show to represent the -
psychological relations among musical keys. |
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Journal of Personality and Social Psychology
1980, Vol. 39, No. 6, 11€61-1178

A Circumplex Model of Affect

James A. Russell
University of British Columbia, Vancouver, Canada

Factor-analytic evidence has led most psycholcgists to describe affect as a set of
dimensions, such as displeasure, distress, depression, excitement, and so on, with
each dimension varying independently of the others. However, there is other
evidence that rather than being independent, these afiective dimensions are inter-
related in a highly systematic fashion. The evidence suggests that these inter-
relationships can be represented by a spatial model in which affective concepts
fall in a circle in the following order: pleasure (C°), excitement (45°), arousal
(90°), distress (135°), displeasure (180°), depression (225°), sleepiness (270°),
and relaxation (315°). This model was offered both as a way psychalogists can

Circumplex Model of Emotions
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Figure 3. Multidimensional scaling solution for 28 affect words.



Conceptual Spaces

Information is organized by quality dimensions

.. that are sorted into domains (space, time, temperature, weight, color, shape ... )
Dimensions within domains are integral

Domains are endowed with a topology or metric

e Similarity is represented by distance in a conceptual space



Properties and Goncepts

* Property: A convex region in a single domain
* (Concept: A set of convex regions in a number of domains; together with
(1) prominence values of the domains and

 (2) information about how the regions in different domains are correlated



Example of Concept “Apple”

Domain

Fruit Values for skin, flesh and seed type

Color Red-green-yellow

Taste Values for sweetness, sourness etc

Shape “‘Round” region of shape space

Nutrition Values for sugar, vitamin C, fibres etc



The “Full Monty” of CS
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Categorization in CS

e Voronoi tessellations around
prototype objects divides
conceptual spaces into categories
based on the nearest neighbour
rule, i.e. each object is associated
with the prototype closest to it.



Categorization in CS

Ditterent prominences
of prototypes
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Learning in CS

P. Gardentors, M.A. Williams: Reasoning about Categories in Conceptual Spaces, Proc. of the Fourteenth International

Joint Conference of Artificial Intelligence, Morgan Kautmann, 589 - 592, 2001.



Learning in CS

Crisping a prototype




Compositionality in GS

Polka Dot Zebra



To be to the right of
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Opacity (black box)

Huge training set
Ditficult incremental learning
Ditticulties in compositionality

Ditficulties in analogic reasoning

Neural Networks vs Conceptual Spaces

More transparent representation (no black box)
Even small training set

Incremental learning

Compositionality

Some forms of analogic reasoning
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Abstract

The reconcilistion of theories of concepts basad on prototypes, exemplars, and theory-like
structres & a longstanding problem in cognitive science. In response to this problem, researchers
have recently tended to adopt either hybrid theories that combine various kinds of representational



Artificial
Intelligence
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A cognitive architecture for artificial vision™
A. Chella®*, M. Frixione®!, S. Gaglio®’

* Diparnimenr: di Ingegneria Elerrrica. Universiia di Palermo. Vigie delfe Scienze, 90128 Falermo, laly
b istiture Internazivnale per gli Ali Studi Scientifics, Via G. Fellegrine 19. 84019 Vieti S.M. (Salerne), hab

Received December 1994 revized Tune 1996

Abstract

A new cagnitive architecture for artificial vision is proposed. The architecture, simed ar an
autonomous intelligent system. is cognit:ve in the sense that several cegnitive hypotheses have been
postlated as guidelines for its des gn. The fiest ane is the cxistence of a conceptual representation
level between the subsymbolic level, that processes sensory data, and the linguistic level, that
describes scenes by means of a high level language. The conceptual level plays the role of
the interpretation domain for the symbols at the Lhinguistic levels. A szcond cognitive hypothesis
concerns the active role of a forus of attention mechanism in the link between the conceptual
and the hinguistic level: the exploration process of the perceived scene 1s driven by hinguistic and
associative expeclations. This link 15 modeled as a ume delay atractor neural network, Results
are reporied obtained by an expenmental implementation of the architeclure.

Keywords® Perception; Active vision: Rohorics; Conecpiual spaces, Spatial reasoning, Geometne reasoning;
Representation levels; Hybrid processing
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A Gognitive Architecture
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The Subsymbolic Level

* Low level processing of data coming tfrom sensors.
* [nformation is not yet organized in terms ot conceptual structures and categories.

* Extraction of the 3-D model



The Static (S

A point is a superquadric

* An object is a composition of superquadrics
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The Linguistic Level

* Hybrid formalism in the KL-ONE tradition
 Terminological component

* terminological language: semantic networks (SlNets)

* concept descriptions (general knowledge)
 Assertional component

o assertional language: ground atoms

* information about specitic scene



Terminological Component
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Assertional Gomponent

* First order logic

* (Concepts = One place predicates

* Roles = Two place predicates



Grounding Objects

Hammer




Generation of Assertions

* Driven by the focus of attention
» associative expectations: learned by NNs

* linguistic expectations: driven by linguistic KB
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Linguistic expectations

Cylinder-shaped (#kl)
Box-shaped (#k2)

Hammer (Hammer#1 )
has-part (Hammer#1,#k1l)
has-part (Hammer#1,#k2)

A priori knowledge of the object shape



Associative expectations

Hammer (Hammer#1 )

Box (Box#1)

Next-to (1#1)
Has-part (1l#1, Hammer#1)
Has-part (1#1,Box#1)

Free associations among previously seen objects



System At Work

Cylinder-shaped(#k1l)
Box-shaped (#k2)

Hammer (Hammer#1)
has-handle (Hammer#1,#k1)
has-head (Hammer#1 ,#k2)
Ball-shaped (#k3)
Ball(Ball#1)
has-part(Ball#1,#k3)
Ellipsoid-shaped(#k4)
Mouse (Mouse#1)
has-part (Mouse#1,#k4)




Grounding Actions

Artificial
Intelligence

s % 4 v

SEVIER Artificial Intelligence 123 (2000) 89-132

www.elsevier.com/locate/artint

Understanding dynamic scenes

A . Chella®®* M. Frixione®, S. Gaglio a,b

2 Dipartimento di Ingegneria Automatica e Informatica, Universita di Palermo,
Viale delle Scienze, 90128 Palermo, Italy
® Centro di Studio sulle Reti di Elaboratori, CNR, Palermo, Italy
€ Dipartimento di Scienze della Conumicazione, Universita di Salerno, Italy

Received 24 June 1999; received i revised form 3 July 2000

Abstract

We propose a framework for the representation of visual knowledge in a robotic agent, with
special attention to the understanding of dynamic scenes. According to our approach, understanding
involves the generation of a high level, declarative description of the perceived world. Developing
such a description requires both bottom-up ., data driven processes that associate symbolic knowledge
representation structures with the data coming out of a vision system, and fop-down processes
in which high level, symbolic information 1s in its tum employed to drive and further refine the
interpretation of a scene.

On the one hand. the computer vision community approached this problem in terms of 2D/3D
shape reconstruction and of estitmation of motion parameters. On the other, the Al community

Static CS

Dynamic CS
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Dynamic scenes

* (seneric movements are made of smooth functions of time separated by instantaneous
discontinuities (Marr).

* A simple motion - delimited by two discontinuities - can be approximated by the
superimposition of frequency harmonics (FFT analysis)



FFT Analysis Of A Simple Motion
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Actions and Situationsm

A Situation is a configuration of points in CS: /
objects maintain their motions states

» An (instantaneous) Action is a scattering of by
points in (S: an event occurs, and some /)
objects may change their motion state |




Dynamic focus of attention
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Terminological component
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System at wo rk

A seizes an object



Grounding Actions
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Meeting of Minds

M. Warglien ‘& P. Gardentors: Semantics, conceptual spaces, and the meeting of minds,

Synthese (2013) 190:2166—2193



Grounding of Word Classes

Concepts » Nouns

Properties * Adjectives

Dynamic » Verbs

properties

Spatial * Prepositions

Relations
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Grounding Intentions

Available online at www.sciencecirect.com

@ Robotics and
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A cognitive framework for imitation learning

A. Chella®*, H. Dindo?, 1. Infantino®

 Dipartimenio Ingengeria Informatica, Universita degli Studi di Falermo. Viale delle Scienze Ed. 6, 90128, Palermo, I'aly
? Istituto di Calcolo ¢ Reti ad Alte Prestazion’ - Consiglio Nazionale deile Ricerche - Viale delle Scienze Ed. 11, 90128 Palermo, Italy

Availazble online |3 March 2006

Abstract

In order to have a robotic system able to effectively lezrn by imitation, and not merely reproduce the movements of a human teacher, th2
system should have the capabilities of deeply understanding the perceived actions to be imitated. This paper deals with the development of
cognitive architecture for leaming by imitation in which a rich conczptual representation of the observed actions s built. The purposz of the
following discussion is to show how this Conceptual Area can be employad to efficiently organize pzrceptual data, to learn movement primitives
from human demonstration and to generate complex actions by combining and sequencing simpler ones The proposed architecture has been
tested on a robotic system composed of a PUMA 200 industrial manipulator and an anthropomorphic robotic hand.

(©) 2006 Elsevier B.V. All rights reserved.

Keywords: Imitation learning; Conceptual spaces; Cognitive robotics; Intelligent manipulation
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Self Reflection: Meeting with Its Own Mind

artificial Intelligenre in Medicine (7008) 44, 147154
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A cognitive architecture for robot

self-consciousness

Antonio Chella®*, Marcello Frixione®, Salvatore Gaglio?
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1-90128 Palermo, Italy
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KEYWORDS Summary
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Objective: One of the major topics towards rabot conscicusnzss is to give a rodot the
capabilities of self-conscicusness. We proposs that robot self-consciousness is based
on highercrder perception of the ro2ot, in the sense that first-order robot perception
is the immediate perception of the outer world, while higher order perception is the

perception of the innar world of the robot.
Methcds and material: We refer to a rotot cognitive architecture that has been
daveloped durinzalmost 10 vears at the RoboticsLad of the University of Palerma. The

Conceptual

Linguistic
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ELF (Robot)
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* A second order perception at time t describes

the perception of the conceptual space of the
agent at time t-d.

 The agent perceives itself and its environment

e | know I am / I am not able to do this’

e | know that I don’t know this”




Higher Order Perceptions

* The robot self is generated and supported by the CS dynamics, in the sense
that the system generates dynamically tirst-order, second-order and higher-
order perceptions during its operations, and this mechanism of generation

of higher-order perceptions is responsible for the robot of selt-
CONSCIOUSNESS.
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Cicerobot

Neurocomputing 72 (2009) 760-766

Contents lists available at ScienceDirect
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The perception loop in CiceRobot, a museum guide robot

Antonio Chella *, Irene Macaluso

Dipartimento di Ingegneria Informatica, Universita di Palermo, Viale delle Scienze, 90128 Palermo, Italy

ARTICLE INFO ABSTRACT

Available online 5 November 2008 The paper discusses a model of robot perception based on a comparison loop process between the
Keywords: actual and the expected robot input sensory data generated by a 3D robot/environment simulator. The
Perception loop perception loop process is operating in CiceRobot, a functional robot architecture implemented on an
Machine perception autonomous robot RWI B21 offering guided tours at the Archaeological Museum of Agrigento, [taly.

3D robot vision © 2008 Elsevier B.V. All rights reserved.




A Robot Prototype

 To design and implement a
prototype of the integrated
computational model of the
meeting of mind on a Pepper
humanoid robot plattorm.




Take Home Message

 (Conceptual Spaces: Intermediate between symbolic and sub symbolic representations
 (rounding:

 (Concepts

* Actions

* |ntentions

* Second Order Concepts
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