
Taxonomy of Manufacturing Joining Operations based on
Process Characterization

Arkopaul Sarkar1,*, Dusan Sormaz2, and Hedi Karray1

1 Laboratoire Génie de Production de l’École Nationale d’Ingénieurs de Tarbes (LGP-INP-ENIT), Université de

Toulouse, CEDEX, 65016, Tarbes, France
2 Russ College of Engineering, Ohio University, Athens, Ohio, USA

Abstract
Depending on the complexity of the assembly design and required production constraints,

factories employ various types of joining operations as part of product fabrication.

Manufacturers, who are in the business of assembling, gain their competence based on what

types of processes and resources they use in joining operations. For data interoperability and

exchange among the partners of distributed manufacturing, these joining operations need to be

described formally to build a common set of vocabulary. Current ontologies in the related

topics lack the details of the process characterization in their analysis and do not adopt

foundational concepts to build such definitions. This paper presents an ontology-driven

characterization of the joining operations to formalize a set of definitions on ontologically

grounded concepts towards the construction of a taxonomy of the joining operations. Following

a rigorous characterization, provided for these joining operations based on detailed analysis of

the underlying mechanisms, and associated material resources and instruments, an OWL-based

rendition is also proposed which is shown to be capable of automatically deriving the taxonomy

of various types of joining operations through inference.

Keywords 1
Assembly, Joining, Welding, Ontology, Taxonomy

1. Introduction

The objective of this paper is to present a domain knowledge-based analysis of various joining

operations, commonly performed during manufacturing assembly, formally expressed using

foundational concepts to provide an ontologically grounded set of vocabulary for achieving intra- and

cross-domain data integration and exchange for assembly design and planning across different

industrial sectors.

In the context of Industry 4.0 (I4.0), the Product Development Process (PDP) demands a high degree

of digitization in every facet of decision making from product designing to production planning. In

these product life cycle stages, process selection plays a critical role [1]. While planning the assembly

line, the most appropriate set of processes and compatible resources need to be determined first. In the

context of distributed cloud manufacturing (CM), the production planning becomes collaborative and

virtual due to the availability of diverse kinds of manufacturing resources and production methods,

offered as services on a cloud platform [2]. For satisfying the goal of multi-tenancy (especially when

manufacturing resources are provisioned as services [3]), the planning system for CM needs to

accommodate a multitude of assembly resources, with varying degrees of capability. In this regard, the

lack of interoperability for assembly process specifications and capability information brings challenges

and high costs to the manufacturers in their effort in the diversification of products and processes.

Although globally agreed standards are available for many facets of assembly operations,

inconsistencies in the definitions of vocabularies can be found across different standards, and even in

FOMI’22: 12th International Workshop on Formal Ontologies Meet Industry, September 11-12, Tarbes, France

* Corresponding author.

EMAIL: asarkar@enit.fr (A. Sarkar); sormaz@ohio.edu (D. Sormaz); mkarray@enit.fr (H. Karray)
ORCID: 0000-0002-8967-7813 (A. Sarkar); 0000-0003-3726-3288 (D. Sormaz); 0000-0002-9652-5164 (H. Karray)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

the same standard. In many cases, these discrepancies need to be clarified by domain experts with

expensive Information Technology (IT) support.

Many of these problems arise from ontologically ‘opaque’ information modelling, where the base

assumptions for the concepts and relationships among them remain grounded only in the personal

interpretation of the modelers and developers. In contrast, this paper develops the necessary set of

vocabularies for characterizing joining operations based on foundational concepts that are

philosophically rigorous and provides their definitions using first-order logic formulas instead of

semantically ambiguous natural language statements. In short, this study follows the fundamental pillars

of the philosophical study of ontology, i.e., “first, say what there is, what exists, what the stuff the reality

is made out of, secondly, say what the most general features and relations of these things are” [4].

Before the quality of assembly, process, control, timing, and costs of assembly processes as well as the

capabilities of the associated resources can be modelled, the joining processes, which act as the atomic

operations for the assembly processes, need to be defined. Therefore, this paper specially focuses on

the joining processes and makes an effort to characterize them as rigorously as possible with the aim to

distinguish different types of joining processes. Furthermore, the model of the joining processes

developed in this study is aimed at inferring subclass relationships among different joining processes

to form the taxonomy. For the sake of the brevity of the paper, no example of joining process instances

modelled and validated by the axiom is provided. This also allowed us to accommodate as many

elucidations of the definitions as possible. However, all the subclass relationships in the joining process

taxonomy are derived using reasoning based on their intricate characteristics. The validity of the model

is then checked by comparing the resultant taxonomy with common knowledge from academia and

industry. This validation also proves the model presented in this paper.

In section 2, past research in the development of ontology in the topics of assembly and joining

operations are presented. In section 3, the core definitions of joining operations are formulated based

on process characterization. In section 4, some examples from various joining operations are modelled

in a taxonomy.

2. Literature Review

Earlier research on ontology modelling in this area focused on representing the product assembly. Open

assembly model (OAM) proposed by NIST, defines generic concepts to integrate requirement,

functional design, kinematic synthesis, and tolerance analysis along with basic part and assembly

information [5]. OAM extends object-oriented assembly representation by Fiorentini et al. [6], which

in turn is based on the Core Product Model (CPM), an earlier model proposed by NIST [7]. Assembly

Relation Model (ARM) proposed by Kim et al. describes several widely used assembly processes, such

as joining, bonding, riveting, welding, and their sub-processes [8]. Kim later provided an impressive

mereotopological representation of the assembly/joining relationship [9]. Focusing on integrated

product design and assembly sequence planning, Gruhier combined spatiotemporal relationships with

a mereotopological construct in the so-called ‘JANUS’ theory that represents the joining processes as

the temporal evolution of the mere topological relationships among parts, tools, and other consumables

[10]. Apart from these generic models of joining processes, ontology models specific to a particular

type of joining process includes welding ontologies developed by both Solano [11] and Saha et al. [12]

separately. FMEA (Failure Mode and Effects Analysis) procedure in the field of reflow lead-free

soldering was presented using ontology models by Molhanec et al. [13]. Except for the work of Kim et

al. and Gruhier, the major drawback of the other ontology models is that they do not provide definitions

of the predicates based on the foundational concept. Without formalized definitions based on commonly

accepted axioms, these ontology models have a local scope that cannot be used for global

interoperability. On the other end, ARM provides a detailed account of product assembly and constructs

the taxonomy of joining operations based on the type of joints, assembly features, mating constraints,

and spatial relationships among parts. They do not consider the joining strategy (e.g., welding fuses two

parts by melting) that is implemented for different types of joining operations. Gruhier’s work considers

the details of sub-processes that take place during a joining operation; however, they only capture the

mereotopological changes of components over time without considering the underlying process

characteristics. So far, no study is conducted to capture the details of joining methods including the

state change of material and their underlying cause. Furthermore, the process specifications and process

level capabilities of joining operations are not found in any existing ontology published at the time of

writing this paper.

3. Ontology Model of Joining Operation

While the standard notion of ‘assembling’ includes many other supporting processes, such as a timely

supply of the parts to workstations, arrangement of workstations on a shop floor, part mating techniques,

and secondary finishing operations, this paper focuses on the exact processes that produce a joint among

some components, namely ‘joining process(s)’. Multiple such joining processes are applied to assemble

individual parts into a larger, more complex component or assembly. For the focus of this paper being

on the individual joining process, the member entities of a joint are simply referred to as components,

irrespective of whether they are individual parts or sub-assembly. From the product’s point of view, the

assembly processes influence aesthetics, manufacturability, repairability, reliability, inspectability,

safety, maintainability, and unit cost of fabrication of the product. However, the concerns for a

particular joining operation are narrower, e.g., material types, thickness, joint geometry, location,

accessibility, jigging and fixturing, distortion control, productivity, and initial and recurring cost of the

operation. To model data for these concepts, the investigation needs to start by analyzing the strategies

of different joining processes. Such characterization of joining processes will also help in inferring the

taxonomy of these processes based on the known hierarchies among associated resources and

subprocesses.

In this section, we provide a deep analysis of basic types of joining and formulate their definitions

based on foundational concepts borrowed from top-level ontology ‘Basic Formal Ontology’ (BFO) [14]

adopting the philosophical grounding and primitive concepts from BFO as the backbone. As the topic

of this study is related to industry, the adoption of BFO makes sense as it has also been adopted by

Industrial Ontology Foundry (IOF) as the foundational ontology [15]. IOF has recently published the

core ontology for the industry called IOF-Core2, which we heavily adopt in this work. If not separately

defined, every term in the formulas given in the following sections for definitions and axioms, is to be

considered from BFO 20203 or IOF-Core. The formulations also use the mereotopological constructs

given by Smith [16], e.g., overlaps, straddles, crosses, boundaryOf. Please refer to [16], [17] for their

elucidation.

In this study, the characterization of joining processes is analyzed based on three primary traits.

First, different types of joining operations produce different types of joints. Second, a set of sub-

processes, specific to the type of joining, to happen in a prescribed order to produce a joint. Lastly, the

specific resources (equipment and consumables) that are needed. A great amount of attention is given

to define the types of joints first as the basic classification of joining processes are derived based on the

type of joints that they produce.

In a typical joining process, the components meet at a joint, which puts constraints on their relative

movement. Literature and instruction manuals [18], [19] often mention the ease of disassembling a joint

as a prominent criterion to classify joining processes. However, only a few joining operations produce

non-permanent joints and all of them use removable fasteners (e.g., screws, nuts, and bolts) to make

disassembly easy. It is more fundamental to investigate the reasons that cause the restriction on the

relative movement of the components. At a first glance, such constraint is typically provided by three

means: 1) continuity of material is produced between two components, 2) an additional material is used

to hold the components (bonding) together in the desired relationship, and 3) relative orientation of

parts restricting their degrees of freedom due to mutual constraints by their unique share. The first

method is solely provided by welding operations which are normally applied to join metal parts by

fusing or coalescing them together. Several other types of joining operations follow the second method

while differing in the type of additional materials (e.g., adhesive, fasteners) and how they are applied.

Brazing, soldering, bonding, and fastening operations may be classified in this category as brazing and

soldering some filler metal, some adherent (glue) for bonding and some fastener for mechanical

fastening acts as the additional material. The last mean, mainly adopted by fitting type operations,

2 https://github.com/iofoundry/Core
3 https://github.com/BFO-ontology/BFO-2020

neither creates continuity in the materials of parts nor uses additional material but only depends on the

shape of the part. Before defining these various kinds of joints, we present a generic way to describe

these different types of joints and then specialize them for joints produced by different types of joining

operations.

3.1. Ontology of Joints

An intuitive way of expressing these three means of joining is to say that every joining operation

introduces a new part in the resulting assembly that did not exist before the joining operation. This

notion is different from the standard notion of assembly, which is normally described as made of two

or more components. The new part may be provided along with the components being joined, such as

a screw or nut, or created from materials out of the components themselves, as in the case of welding.

To define different types of joints produced by different joining processes, we first introduce the

predicate ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 between two material entities. As stated in Axiom 1, ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 specializes

𝑏𝑓𝑜: ℎ𝑎𝑠𝑃𝑟𝑜𝑝𝑒𝑟𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑛𝑡𝑃𝑎𝑟𝑡𝐴𝑡𝐴𝑙𝑙𝑇𝑖𝑚𝑒𝑠, which is an inverse proper parthood relation projected over the

entire temporal interval in which the ‘whole’ exists.

Axiom 1: ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟(𝑎, 𝑏) → ℎ𝑎𝑠𝑃𝑟𝑜𝑝𝑒𝑟𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑛𝑡𝑃𝑎𝑟𝑡𝐴𝑡𝐴𝑙𝑙𝑇𝑖𝑚𝑒𝑠(𝑎, 𝑏)

As stated in Axiom 2, the ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 is a two-place predicate relating to two material entities,

of which the first material entity has two components, x and y, as parts and joined by the second material

entity b. Additionally, the first material entity is made of only these three parts (x, y, and b) and nothing

else. In reality, there can be more than two components that can be joined, but for simplicity, it is

assumed that only two components can be joined by using 𝑗𝑜𝑖𝑛 predicate. Moreover, more than two

parts may still be modelled by using 𝑗𝑜𝑖𝑛 predicate recursively. It is not shown here for brevity. It is to

be noted that two components x and y may refer to the same entity. This situation may occur in certain

cases, e.g., two ends of a wire are joined to form a ring.

Def. 1: ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟(𝑎, 𝑏) ↔ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐸𝑛𝑡𝑖𝑡𝑦(𝑎) ∧ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐸𝑛𝑡𝑖𝑡𝑦(𝑏) ∧ ∃𝑥, 𝑦 (𝑝𝑎𝑟𝑡𝑂𝑓(𝑥, 𝑎) ∧ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑦, 𝑎) ∧

𝑗𝑜𝑖𝑛𝑠(𝑏, 𝑥, 𝑦) ∧ ∀𝑚(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑚, 𝑎) ↔ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑚, 𝑥) ∨ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑚, 𝑦) ∨ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑚, 𝑏)))

Next, we define the tripartite relation 𝑗𝑜𝑖𝑛𝑠 using mereotopological relations given by Smith [16], e.g.,

overlaps, straddles, crosses, boundaryOf. Please refer to [16], [17] for detailed elucidation. The first

axiom 3 mereotopologically relates the joining material to the components being joined and the second

axiom 4 positions the joining material at the juncture of these two components. Axiom 3 expresses that

the connecting material must have two different parts “touching” x and y respectively. Following

axioms of straddles in Smith [16], either the part of the joining material is at the boundary of or at a

tangent to the component. The first case is evident in most of the joints whereas the second case may

occur in cases, e.g., two magnetic balls joined by magnetic force.

Axiom 3: 𝑗𝑜𝑖𝑛𝑠(𝑏, 𝑥, 𝑦) → ∃𝑏′, 𝑏′′((𝑏′ ≠ 𝑏′′) ∧ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑏′, 𝑏) ∧ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑏′′, 𝑏) ∧ 𝑠𝑡𝑟𝑎𝑑𝑑𝑙𝑒𝑠(𝑏′, 𝑥) ∨ 𝑠𝑡𝑟𝑎𝑑𝑑𝑙𝑒𝑠(𝑏′′, 𝑦))

Lastly, the connector either crosses or straddles the mating boundary j. We borrow the concept of

the mating boundary from Kim’s formulation defining j as any geometric entity that can be a mating

boundary including line, point, and face, of two joining entities of x and y (j is often a virtual geometric

entity, such as datum plane in CAD) [9]. The definition of mating boundary is also used by Demoly as

the foundation for mereotopological description of kinematic pairs [20]. We reified the original

formulation of Kim with a ternary predicate MatingBoundary and classified the mating boundary as

bfo:TwoDimensionalSpatialRegion (Axiom 5)[9]. Axiom 4 considers two possible scenarios: a) a

welded or glued portion may only stay at part of the boundary of the 𝑀𝑎𝑡𝑖𝑛𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 and b) the

weld or fasteners may go across the mating boundary, i.e., consumes part of the mating boundary.

Axiom 4: 𝑗𝑜𝑖𝑛𝑠(𝑏, 𝑥, 𝑦) → ∃𝑗(𝑀𝑎𝑡𝑖𝑛𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑗, 𝑥, 𝑦) ∧ (𝑐𝑟𝑜𝑠𝑠𝑒𝑠(𝑏, 𝑗) ∨ 𝑠𝑡𝑟𝑎𝑑𝑑𝑙𝑒𝑠(𝑏, 𝑗)))
Axiom 5: 𝑀𝑎𝑡𝑖𝑛𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑗, 𝑥, 𝑦) → 𝑇𝑤𝑜𝐷𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 (𝑗) ∧ ∀𝑤 (𝑝𝑎𝑟𝑡𝑂𝑓(𝑤, 𝑗) → 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑤, 𝑥) ∧

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑤, 𝑦))

With the predicate ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 we can finally define 𝐽𝑜𝑖𝑛𝑡 as given in Def 2. We classify 𝐽𝑜𝑖𝑛𝑡
as 𝑏𝑓𝑜: 𝐹𝑖𝑎𝑡𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑎𝑟𝑡 because of its dependence on the parent assembly for its existence and that no

bona fide boundary can be discerned of the 𝐽𝑜𝑖𝑛𝑡. We use the term to disambiguate from other types of

assemblies (e.g., group of people, set of computer instructions). We borrow the definition of

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 from IOF-Core ontology, which defines it as having some

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 as part and is output of some 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦𝑃𝑟𝑜𝑐𝑒𝑠𝑠. As per Def. 2, there must exist

a 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 for which the 𝐽𝑜𝑖𝑛𝑡 is connector. Conversely, as presented in Axiom 6, every

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 has at least one 𝐽𝑜𝑖𝑛𝑡 as its connector. Additionally, we define another

predicate ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 in Axiom 7 for relating the Joint of an assembly to the

component of the assembly, which is joined by that specific Joint.

Def. 2: 𝐽𝑜𝑖𝑛𝑡(𝑗) ↔ 𝐹𝑖𝑎𝑡𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑎𝑟𝑡(𝑗) ∧ ∃𝑎 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑎) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟(𝑎, 𝑗)

Axiom 6: 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑎) → 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑎) ∧ ∃𝑗 (𝐽𝑜𝑖𝑛𝑡(𝑗) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑒𝑛𝑐𝑡𝑜𝑟(𝑎, 𝑗) ∧

∀𝑝 (ℎ𝑎𝑠𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑃𝑎𝑟𝑡(𝑎, 𝑝) → (𝑝 ≠ 𝑗)))

Axiom 7: ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑏, 𝑥) → 𝐽𝑜𝑖𝑛𝑡(𝑏) ∧ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥) ∧ ∃𝑦 (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑦) ∧

𝑗𝑜𝑖𝑛𝑠(𝑏, 𝑥, 𝑦))

The model of 𝐽𝑜𝑖𝑛𝑡 presented above may require some more clarifications. First, it is to be noted

that the def. 1 does not include the identity of the components x, y. It is possible that an assembly,

produced by some joining process, is not the correct assembly as specified by the requirement, for

example, a carpenter mistakenly nailing one piece of wood to the floor still produces a joint however

not the one she intended. To include the correctness of the assembly produced, additional clauses for

identifying the components, referring to the materials of the components, identification number, or

visual inspection, may be added to the definition as required.

3.2. Ontology Model of Basic Joining Types

With the help of the predicate hasConnector the broad types of joining processes are presented below.

First, the generic definition of the joining process is given in Def. 3.

Def. 3: 𝐽𝑜𝑖𝑛𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ↔ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ∧ ∀𝑗 (ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡(𝑝, 𝑗) → 𝐽𝑜𝑖𝑛𝑡(𝑗))

As the basic types of joining processes are derived based on the types of joints they produce as

primary differentia, different types of joints need to be defined first. For welding, some portion of the

material of this new part belonged to the original components before assembly as expressed for

JointType1 in Def. 4. It is to be noted that some types of welding employ filler metal that becomes part

of the connector. In contrast, the material of the connector is entirely supplied from outside for brazing,

soldering, bonding, and fastening types of joining processes. Def. 5 expresses that for this type of joint

(type 2), some additional material (filler metal) is used in the connector that fuses with the base metal.

To differentiate between brazing and soldering, further details of which are presented in Section 3.3.

Lastly, fitting produces a unique type of joint (type 3 in Def. 6) in which the connector is embedded in

the components as they are specially designed to provide shape constraints.

Def.4: 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒1(𝑗) ↔ 𝐽𝑜𝑖𝑛𝑡(𝑗) ∧ ∃𝑎, 𝑏 ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑗, 𝑎) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑗, 𝑏) ∧

∃𝑚 (𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑗) ∧ (𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑥) ∨ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑦)))

Def. 5: 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒2(𝑗) ↔ 𝐽𝑜𝑖𝑛𝑡(𝑗) ∧ ∃𝑎, 𝑏 ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑗, 𝑎) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑗, 𝑏) ∧
∃𝑧 (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐸𝑛𝑡𝑖𝑡𝑦(𝑧) ∧ (𝑧 ≠ 𝑥) ∧ (𝑧 ≠ 𝑦) ∧ ∀𝑚(𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑗) ↔ ¬𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑥) ∧ ¬𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑦) ∧ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑧))

Def. 6: 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒3(𝑗) ↔ 𝐽𝑜𝑖𝑛𝑡(𝑗) ∧ ∃𝑎, 𝑏 ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑗, 𝑎) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑗, 𝑏) ∧

∀𝑚(𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑗) ↔ 𝑝𝑟𝑜𝑝𝑒𝑟𝑃𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑥) ∨ 𝑝𝑟𝑜𝑝𝑒𝑟𝑃𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑦))

Based on the three types of joints defined in Def. 4-6, we can define five basic types of joining

processes by specializing in the type of Joint which is the output of the joining process (see Def. 3).

Welding produces JointType1 as expressed in Def. 7. JointType3 is produced by Fitting as expressed in

Def. 11. Joining processes e.g., Brazing, Soldering, Fastening, and Bonding, all produce JointType2.

For Fastening (Def. 9) and Bonding (Def. 10), all material of the joint is part of a type of Fastener and

Adhesive, respectively. For both Brazing and Soldering type processes, the joint is created by some

FillerMaterial (Def. 8). To distinguish between these two types of joining, further characterization of

the underlying processes is needed. This is tacked in the next section.

Def. 7: 𝑊𝑒𝑙𝑑𝑖𝑛𝑔(𝑝) ↔ 𝐽𝑜𝑖𝑛𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ∧ ∀𝑗 (ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡(𝑝, 𝑗) → 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒1(𝑗))

Def. 8: 𝐵𝑟𝑎𝑧𝑖𝑛𝑔(𝑝) ∨ 𝑆𝑜𝑙𝑑𝑒𝑟𝑖𝑛𝑔(𝑝) ↔ 𝐽𝑜𝑖𝑛𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ∧ ∀𝑗 (ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡(𝑝, 𝑗) → 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒2(𝑗) ∧
∀𝑚 (𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑗) → ∃𝑓 𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑓) ∧ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑓))

Def. 9: 𝐹𝑎𝑠𝑡𝑒𝑛𝑖𝑛𝑔(𝑝) ↔ 𝐽𝑜𝑖𝑛𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ∧ ∀𝑗 (ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡(𝑝, 𝑗) → 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒2(𝑗) ∧ ∀𝑚 (𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑗) →
∃𝑓 𝐹𝑎𝑠𝑡𝑒𝑛𝑒𝑟(𝑓) ∧ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑓))

Def. 10: 𝐵𝑜𝑛𝑑𝑖𝑛𝑔(𝑝) ↔ 𝐽𝑜𝑖𝑛𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ∧ ∀𝑗 (ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡(𝑝, 𝑗) → 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒2(𝑗) ∧ ∀𝑚 (𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑗) →
∃𝑓 𝐴𝑑ℎ𝑒𝑠𝑖𝑣𝑒(𝑓) ∧ 𝑝𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑓))

Def. 11: 𝐹𝑖𝑡𝑡𝑖𝑛𝑔(𝑝) ↔ 𝐽𝑜𝑖𝑛𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ∧ ∀𝑗 (ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡(𝑝, 𝑗) → 𝐽𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒3(𝑗))

In some of the above and many following definitions, various types of material entities, e.g.,

FillerMaterial, WeldingMachine, Fastener, Adhesive, and processes, e.g., Heating, Melting,

Solidifying, ApplyingPressure, are used. These classes are not defined in this paper as they are general

objects and processes that may be used in many other situations than just joining processes. Therefore,

their definitions need to be handled by some other ontology. For example, a fastener or an adhesive is

a type of artefact that is specifically engineered for connecting components, that they bear some type

of function (e.g., 𝐴𝑑ℎ𝑒𝑠𝑖𝑣𝑒(𝑥) ↔ 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡(𝑥) ∧ ∃𝑓 (𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑂𝑓𝐻𝑜𝑙𝑑𝑖𝑛𝑔𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑠(𝑥) ∧ 𝑏𝑒𝑎𝑟𝑠(𝑥, 𝑓)).

3.3. Characterization of Processes Underlying Joining Operations

The joining processes described in Def. 7-11 are characterized by the relationships, that the resultant

assembly holds with the input components. However, each type of process is also composed of multiple

sub-processes which transform and produce the joint in its final form. This reductive perspective is

necessary for modelling the joining processes more accurately and thus classifying them further into

sub-categories. These subcategories are distinguished by the type of tools used, the underlying causes

of the transformation, and the associated consumable resources required by these processes.

For joining processes such as welding (except spot welding), soldering, and brazing, a typical run is

composed of a cyclical pattern of processes that are repeated for the entire length of the joint. This is

not true for other types of joining processes, e.g., joining two wooden boards with nails. However, one

may need to place more than one nail to join them properly but driving each nail is discrete and

fundamentally different from a continuous process, e.g., welding. For these types of continuous joining

processes, the underlying processes cannot be part of the entire run of the process, but only part of each

unit pattern which is repeated. In this paper, we provide two different ways to model the process

characterization, focusing mainly on handling the continuous joining processes, but in such a way that

each of the methods can also be used for the discrete type of joining processes without any special

adjustment. In the first method, only the minimum unique pattern of the joining process is characterized,

and, in the second method, every joining process is considered as a not actual but planned process and

the characterization of the actual processes is expressed as the corresponding specification (which are

some types of information – namely a ‘plan’ - that in ‘aboutness’ relation with the process).

In the following formulations, thematic roles [21] of the participants (i.e., some entity that

participates in a process) are used for distinguishing different types of materials involved in a process,

e.g., isPatientOf is used for denoting a material that is affected by the process and isInstrumentOf to

denote the participating machine or tools. Trivially, these predicates are the specializations of

bfo:participatesIn, however, not yet incorporated by BFO or IOF-Core.

3.3.1. Method 1: Characterization Using The Unit Joining Process

We use the predicate hasUnitProcess to express that the transformation scheme, to be characterized for

each of these types of joining processes, is for each unit pattern (minimally homomeric). Axiom 8 is

constructed following the formulation of atomicity given by Varzi [22] saying that process p is

composed of all 𝜑(𝑝′), i.e., all and only those processes (here 𝑝′) that satisfy the given condition φ,

such that every 𝑝′ is part of p, and every unit process of p overlaps some φ-er, i.e. they also satisfy the

same given condition φ.

Axiom 8: ℎ𝑎𝑠𝑈𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝, 𝑝′) → 𝑝𝑎𝑟𝑡𝑂𝑓(𝑝′, 𝑝) ∧ 𝜑(𝑝′) ∧ ∀𝑝′′ (ℎ𝑎𝑠𝑈𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝, 𝑝′′) → ∃𝑥(𝜑(𝑥) ∧

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑥, 𝑝′′)))

Based on the nature of condition φ different types of joining processes may be characterized. It is to

be noted that the predicate hasUnitProcess may also be applied to fastening, bonding, and fitting, which

are discrete by default. In that sense, every occurrence of fastening, bonding, and fitting is composed

of a single occurrence of the corresponding unit process. The condition φ for welding, brazing, and

soldering is expressed with the predicates hasWeldingMethod, hasBrazingMethod,

hasSolderingMethod etc. No generic formulation of such a primary method is given as they are

extremely varied for different kinds of joining processes that are presented below.

Speaking generally of the welding process, the base metals of the input components are melted at

the mating boundary by the application of a high heat source to produce a pool of molten metals (the

weld pool) from both the components and sometimes filler metals. This weld pool subsequently

solidifies and creates the connector as the heat source is removed. In the def. 12 the welding method is

a FusingMaterial process, which is composed of Heating, Melting and Solidifying as subprocesses,

executed in that order. It also includes WeldingMachine as the instrument for the Heating type process

(under variable h), expresses that both the base metal, which is input to the welding process (under

variable mt) and filler metal is melted (sometimes only the base metal), and both of it solidifies in an

environment of some type of inert gas or slug (under variable s).

Def. 12: ℎ𝑎𝑠𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑤, 𝑓) ↔ 𝑊𝑒𝑙𝑑𝑖𝑛𝑔(𝑤) ∧ 𝐹𝑢𝑠𝑖𝑛𝑔𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑓) ∧ ∃ℎ (𝐻𝑒𝑎𝑡𝑖𝑛𝑔(ℎ) ∧

∀𝑖 (ℎ𝑎𝑠𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡(ℎ, 𝑖) → 𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑖))) ∧ ∃𝑚𝑡 (𝑀𝑒𝑙𝑡𝑖𝑛𝑔(𝑚𝑡) ∧ ∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑚𝑡, 𝑐) →

ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡(𝑤, 𝑐) ∧ (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐) ∨ 𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑐)))) ∧ ∃𝑠 (𝑆𝑜𝑙𝑖𝑑𝑖𝑓𝑦𝑖𝑛𝑔(𝑠) ∧ ∀𝑔 (𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑠(𝑠, 𝑔) →

𝐼𝑛𝑒𝑟𝑡𝐺𝑎𝑠(𝑔) ∨ 𝑠𝑙𝑢𝑔(𝑔)) ∧ ∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑚𝑡, 𝑐) → ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡(𝑤, 𝑐) ∧ (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐) ∨

𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑐)))) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(ℎ, 𝑤) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑚𝑡, 𝑤) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑠, 𝑤) ∧

𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(ℎ, 𝑚𝑡) ∧ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚𝑡, 𝑠)

Although both the brazing and soldering process also apply heat to melt metals, unlike the welding

process, no material from the input components is melted during the brazing and soldering process.

Def. 13 for the Brazing method is formulated in a similar way to Def. 12, except stating that only filler

metals are melted by the heating process (clause under m). Also, a separate clause using the predicate

hasTargetTemperature is added to distinguish the brazing process from the soldering process, which

uses much less temperature than the brazing process. As per standard, all such processes that exceed

the temperature of 450 ̊ are considered brazing4. For elucidation, the definition of the predicate

hasTargetTemperature is given in Def. 14, which says that the target temperature is the maximum

temperature of the patient, i.e., the material that is being heated, during the heating process. We do not

include the definition for hasSolderingMethod as it will be almost the same as Def. 13 except the target

temperature being less than equal to 450 ̊.

Def. 13: ℎ𝑎𝑠𝐵𝑟𝑎𝑧𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑏, 𝑝) ↔ 𝐵𝑟𝑎𝑧𝑖𝑛𝑔(𝑏) ∧ 𝐵𝑟𝑎𝑧𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑝) ∧ ∃ℎ (𝐻𝑒𝑎𝑡𝑖𝑛𝑔(ℎ) ∧

ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑒𝑚𝑒𝑟𝑎𝑡𝑢𝑟𝑒(ℎ, 𝑇) ∧ 𝑇 > 450 ̊ ∧ ∀𝑖 (ℎ𝑎𝑠𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡(ℎ, 𝑖) → 𝐵𝑟𝑎𝑧𝑖𝑛𝑔𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡) ∧ ∃𝑓 (𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑒𝑡𝑎𝑙(𝑓) ∧

ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(ℎ, 𝑓))) ∧ ∃𝑚𝑡 (𝑀𝑒𝑙𝑡𝑖𝑛𝑔(𝑚𝑡) ∧ ∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑚𝑡, 𝑐) → ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡(𝑤, 𝑐) ∧ 𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑒𝑡𝑎𝑙(𝑐))) ∧

∃𝑠 (𝑆𝑜𝑙𝑖𝑑𝑖𝑓𝑦𝑖𝑛𝑔(𝑠) ∧ ∀𝑔 (𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑠(𝑠, 𝑔) → 𝐹𝑙𝑢𝑥(𝑔)) ∧ ∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑚𝑡, 𝑐) → ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡(𝑤, 𝑐) ∧

𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑐))) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(ℎ, 𝑝) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑚𝑡, 𝑝) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑠, 𝑝) ∧

𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(ℎ, 𝑚𝑡) ∧ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚𝑡, 𝑠)

4 ISO 857-2:2005(en) Welding and allied processes — Vocabulary — Part 2: Soldering and brazing processes and related terms, 3.1.2

Def. 14:ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(ℎ, 𝑡𝑚𝑝) ↔ 𝐻𝑒𝑎𝑡𝑖𝑛𝑔(ℎ) ∧ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑡𝑚𝑝) ∧ ∃𝑚 (𝑖𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑂𝑓(𝑚, ℎ) ∧

∃𝑡 (𝑜𝑐𝑐𝑢𝑟𝑒𝑠𝐼𝑛(ℎ, 𝑡) ∧ 𝑖𝑛ℎ𝑒𝑟𝑒𝑠𝐼𝑛(𝑡𝑚𝑝, 𝑚, 𝑡))) ∧ ∀ 𝑡𝑚𝑝′, 𝑡′(𝑜𝑐𝑐𝑢𝑟𝑒𝑠𝐼𝑛(ℎ, 𝑡′) ∧ 𝑖𝑛ℎ𝑒𝑟𝑒𝑠𝐼𝑛(𝑡𝑚𝑝′, 𝑚, 𝑡′) ∧

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑡𝑚𝑝′) → 𝑡𝑚𝑝′ < 𝑡𝑚𝑝)

Underlying methods for the fastening and bonding processes centre around the placing of the

fastener into and applying adhesive to the components being joined. In both processes, the components

need to be positioned to align the mating surfaces. However, such alignment for fastening is performed

before the fastener is placed, e.g., aligning the holes for inserting nuts, whereas the adhesive is applied

to the mating surfaces before the components are aligned. For Fastening, different methods may be

required to secure the fastener, e.g., tightening a bolt on the nut, driving of screw, hammering a nail,

and bucking or upsetting the tail of a rivet. Similarly, pressure is applied on the mating surfaces to set

the bonding. In the following definitions, Def. 15 for Fastening, and Def. 16 for Bonding, no preparatory

phases are considered. Such preparatory phases may require drilling holes or slots for inserting the

fastener and surface preparation for bonding.

Def. 15:ℎ𝑎𝑠𝐹𝑎𝑠𝑡𝑒𝑛𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑓, 𝑝) ↔ 𝐹𝑎𝑠𝑡𝑒𝑛𝑖𝑛𝑔(𝑓) ∧ 𝐹𝑎𝑠𝑡𝑒𝑛𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑝) ∧ ∃𝑎 (𝐴𝑙𝑖𝑔𝑛𝑖𝑛𝑔(𝑎) ∧

∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑎, 𝑐) → 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐))) ∧ ∃𝑖 (𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑛𝑔𝐹𝑎𝑠𝑡𝑒𝑛𝑒𝑟(𝑖) ∧ ∀𝑥 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑖, 𝑥) →

𝐹𝑎𝑠𝑡𝑒𝑛𝑒𝑟(𝑥))) ∧ ∃𝑠 (𝑆𝑒𝑐𝑢𝑟𝑖𝑛𝑔𝐹𝑎𝑠𝑡𝑒𝑛𝑒𝑟(𝑠) ∧ ∀𝑥 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑖, 𝑥) → 𝐹𝑎𝑠𝑡𝑒𝑛𝑒𝑟(𝑥))) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑎, 𝑝) ∧

𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑖, 𝑝) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑠, 𝑝) ∧ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑎, 𝑖) ∧ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑖, 𝑠)

Def. 16:ℎ𝑎𝑠𝐵𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑓, 𝑝) ↔ 𝐵𝑜𝑛𝑑𝑖𝑛𝑔(𝑓) ∧ 𝐵𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑝) ∧ ∃𝑎 (𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔𝐴𝑑ℎ𝑒𝑠𝑖𝑣𝑒(𝑎) ∧

∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑎, 𝑐) → 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐)) ∧ ∀𝑑 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑎, 𝑑) → 𝐴𝑑ℎ𝑒𝑠𝑖𝑣𝑒(𝑑))) ∧ ∃𝑖 (𝐴𝑙𝑖𝑔𝑛𝑖𝑛𝑔(𝑖) ∧

∀𝑥 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑖, 𝑥) → 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥))) ∧ ∃𝑠 (𝐴𝑝𝑝𝑦𝑖𝑛𝑔𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑠) ∧ ∀𝑥 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑖, 𝑥) →

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥))) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑎, 𝑝) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑖, 𝑝) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑠, 𝑝) ∧

𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑎, 𝑖) ∧ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑖, 𝑠)

Fitting is the simplest of all joining types as the special shapes of the components that fit together to

create the joint are created beforehand when the components are fabricated or moulded. As expressed

in Def. 17, the actual fitting process requires only aligning the components at their mating surfaces and

applying pressure of varying degrees (sometimes may be insignificant) to secure the joint.

Def. 17:ℎ𝑎𝑠𝐹𝑖𝑡𝑡𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑓, 𝑝) ↔ 𝐵𝑜𝑛𝑑𝑖𝑛𝑔(𝑓) ∧ 𝐹𝑖𝑡𝑡𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(𝑝) ∧ ∃𝑎 (𝐴𝑙𝑖𝑔𝑛𝑖𝑛𝑔(𝑎) ∧ ∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑎, 𝑐) →

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐))) ∧ ∃𝑔 (𝐴𝑝𝑝𝑦𝑖𝑛𝑔𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑔) ∧ ∀𝑥 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑖, 𝑥) → 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥))) ∧

𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑎, 𝑝) ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑂𝑓(𝑔, 𝑝) ∧ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑎, 𝑔)

3.3.2. Method 2: Characterization Using The Joining Process Specification

The formulation of the unit process, described in the last section, aims to solve the joining processes by

focusing on some unique pattern that is repeated. However, the unit process may not be required for

characterization if the joining process is modelled as a plan for some future process but not the actual

process. The benefit of modelling the joining process as a planned process is that the length of the run

for which the actual process will be performed may not be needed to be considered in the plan. The

repeating patterns may be considered as different actualizations of the same plan that occurs

subsequently. In this way, the characterization of the joining processes becomes simpler and may

provide an opportunity to capture the formalizations in less expressive languages, e.g., OWL 2.05.

Much of the foundational work from IOF-Core may be used for expressing the plan for processes,

in which a iof:PlanSpecification is defined as an cco:InformationContentEntity which has some

iof:ActionSpecification and cco:ObjectSpecification as part and cco:prescribes some

iof:PlannedProcess. To exploit the PlanSpecification and ActionSpecification class for representing the

characterization of joining processes, we first need to adjust def. 3 as in def. 3a.

Def. 3a: 𝐽𝑜𝑖𝑛𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ↔ 𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑝) ∧ ∀𝑗 (ℎ𝑎𝑠𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡(𝑝, 𝑗) → 𝐽𝑜𝑖𝑛𝑡(𝑗))

5 https://www.w3.org/TR/owl2-overview/

As more than one ActionSpecifications can be part of the PlanSpecification, using them is beneficial

in expressing the composing of different underlying processes, which can then be described as part of

some specific type of PlanSpecification. In this way the bfo:occurrentPartOf relations in def. 13-17 are

expressed as bfo:continuantPartOf as InformationContentEntity. At the same time, the actual processes

are prescribed by ActionSpecifications, along with the precedence among the underlying processes,

along with different materials and instruments are suitably modelled by the ActionSpecifications.

Additionally, the ObjectiveSpecification as part of the PlanSpecification is used to represent the

outcome of the joining processes. For example, Axiom 11 shows that WeldingObjective prescribes only

WeldedJoint.

Following this way of characterizing the joining processes, the hasWeldingMethod,

hasBrazingMethod, hasSolderingMethod etc. may be translated using prescribedBy (inverse of

prescribes) which relates some sub-type of JoiningProcess to some suitable sub-type of

PlanSpecification. In this paper, we only provide the model for a generic welding method represented

by Def. 12 in the following expressions. The other types of joining processes can be translated similarly.

Axiom 9: 𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑤) → 𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑤) ∧ ∀𝑝 (𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑𝐵𝑦(𝑤, 𝑝) → 𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝))

Axiom 10: 𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) → 𝑃𝑙𝑎𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) ∧ ∀𝑓 (ℎ𝑎𝑠𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑛𝑡𝑃𝑎𝑟𝑡(𝑝, 𝑓) →

𝐹𝑢𝑠𝑖𝑛𝑔𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑓)) ∧ ∃𝑜 (𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑜) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑛𝑡𝑃𝑎𝑟𝑡(𝑝, 𝑜))

Axiom 11: 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑜) ∧ 𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑠(𝑜, 𝑗) ∧ 𝑊𝑒𝑙𝑑𝑒𝑑𝐽𝑜𝑖𝑛𝑡(𝑗) → 𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑂𝑏𝑗𝑒𝑐𝑡𝑢𝑣𝑒(𝑝)

Axiom 12: 𝐹𝑢𝑠𝑖𝑛𝑔𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) → 𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) ∧

∃ℎ (𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(ℎ) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑛𝑡𝑃𝑎𝑟𝑡(𝑝, ℎ)) ∧ ∃𝑚𝑡 (𝑀𝑒𝑙𝑡𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑚𝑡) ∧

ℎ𝑎𝑠𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑛𝑡𝑃𝑎𝑟𝑡(𝑝, 𝑚𝑡)) ∧ ∃𝑠 (𝑆𝑜𝑙𝑖𝑑𝑖𝑓𝑦𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(ℎ) ∧ ℎ𝑎𝑠𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑛𝑡𝑃𝑎𝑟𝑡(𝑝, 𝑠))

Axiom 13: 𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) → 𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) ∧ ∀ℎ ((𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑠(𝑝, ℎ) → 𝐻𝑒𝑎𝑡𝑖𝑛𝑔(ℎ)) ∧

 ∀𝑖 (ℎ𝑎𝑠𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡(ℎ, 𝑖) → 𝑊𝑒𝑙𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒))

Axiom 14: 𝑀𝑒𝑙𝑡𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) → 𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) ∧ ∀𝑚𝑡 ((𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑠(𝑝, 𝑚𝑡) →

𝑀𝑒𝑙𝑡𝑖𝑛𝑔(𝑚𝑡)) ∧ ∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑚𝑡, 𝑐) → ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡(𝑤, 𝑐) ∧ (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐) ∨ 𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑐))))

Axiom 15: 𝑆𝑜𝑙𝑖𝑑𝑖𝑓𝑦𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) → 𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑝) ∧ ∀𝑠 ((𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑠(𝑝, 𝑠) →

𝑆𝑜𝑙𝑖𝑑𝑖𝑓𝑦𝑖𝑛𝑔(𝑠)) ∧ ∀𝑔 (𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑠(𝑠, 𝑔) → 𝐼𝑛𝑒𝑟𝑡𝐺𝑎𝑠(𝑔) ∨ 𝑠𝑙𝑢𝑔(𝑔)) ∧ ∀𝑐 (ℎ𝑎𝑠𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑚𝑡, 𝑐) → ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡(𝑤, 𝑐) ∧

(𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐) ∨ 𝐹𝑖𝑙𝑙𝑒𝑟𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑐))))

4. OWL Implementation of The Taxonomy

In this section, we describe the taxonomy of the joining process encoded in OWL reusing IOF-Core

and BFO 2020, recursively. The development is modularized as joining6, importing iof-core7 along with

bfo8 and annotation vocabulary iof-av9 (contains additional annotation properties), as its root, which is

imported by modules dedicated to the taxonomy for each basic type of joining processes, e.g., welding,

soldering, brazing, bonding etc. These ontology files are available through the GitHub repository

(which has not been published yet).

The taxonomy produced under each basic type of joining process is vast and therefore it is not

possible to provide the characterization of each subtype in this article. What we intend to show is that

the taxonomy built is purely based on inferring subsumption instead of explicit owl:SubClassOf

declaration. The second method, presented in Section 3.3.2, is adopted in the process characterization

of the joining processes due to two reasons: 1) suitability for rendering in OWL, 2) availability of many

base classes (e.g., PlannedProcess, PlanSpecification, ActionSpecification) in IOF-Core that can be

reused.

The groundwork for the basic classification of joining processes, presented in Section 3.2, is difficult

to be rendered in OWL, due to the limitation in expressiveness of the language. This requires some the

predicates defined in Def. 1 to 6 to be declared as primitive; however, the corresponding FOL formula

6 http://www.semanticweb.org/joining
7 https://purl.industrialontologies.org/ontology/core/Core/
8 http://purl.obolibrary.org/obo/
9 https://purl.industrialontologies.org/ontology/core/meta/AnnotationVocabulary/

http://www.semanticweb.org/joining

is inserted as annotation using iof-av. hasConnector is declared as an sub-property of ‘bfo:has proper

continuant part at all times’ (Axiom 1), which has domain as iof:Assembly and range ‘bfo:fiat object

part’ and inverse of isConnectorOf as a brutal simplification of Def. 1. Appropriating Def. 2, Joint is

classified under ‘bfo:fiat object part’ that isConnectorOf some MechanicalAssembly and only

MechanicalAssembly. Following Axiom 2, MechanicalAssembly is declared as an iof:assembly having

at least one Joint as connector. Being a subclass of iof:assembly, it inherits the clause that it has some

‘iof:material component’ as part. Following Def. 3a, JoiningProcess is defined as a subclass of

'manufacturing process' which has Joint as specified output. It is to be noted that JoiningProcess is not

a subclass of ‘assembly process’ as the former is only a part of the latter along with many other processes

such as materials feeding, material preparation, and post-joining processes, such as cleaning and

deburring.

Three types of Joint(s) from Def. 4-6 are declared as primitive. For making the model intelligible,

WeldedJoint is declared as a subclass of JointType1, FittedJoint as a subclass of JointType3, and

BrazedJoint, SolderedJoint, BondedJoint, and FastenedJoint as subclasses of JointType2. These

subtypes of Joint helps in classifying the basic types of JoiningOperations. Table 1 only shows the basic

classes for WeldedJoint and WeldingOperation. Other types of joining operations and joints follow the

same patterns.

Table 1 Definitions of Classes and Object Properties in OWL Functional Syntax

Class / Object Property Definition
joining:hasConnector domain:Assembly, range: 'fiat object part'

joining:Joint 'fiat object part' and (IsConnectorOf some MechanicalAssembly) and
(IsConnectorOf only MechanicalAssembly)

weld:WeldedJoint Joint and 'is output of' some WeldingProcess
joining:MechanicalAssembly assembly and hasConnector some Joint

joining:JoiningProcess 'manufacturing process' and ('has specified output' only Joint)
weld:WeldingProcess 'manufacturing process' and 'has specified output' only WeldedJoint

and ('prescribed by' only WeldingSpecification)
Weld:WeldingSpecification 'plan specification' and ('has continuant part at all times' only

FusingMaterialSpecification) and 'has continuant part at all times'
some WeldingObjective

weld:WeldingObjective 'objective specification' and (prescribes some WeldedJoint) SubClassOf
WeldingObjective

braze:Brazing 'manufacturing process' and ('has specified output' only BrazedJoint)
 and ('prescribed by' only BrazingSpecification) and 'has continuant

part at all times' some BrazingObjective

The taxonomy of welding processes is complex as many variations are available for this joining

process. In this section, we focus on showing the generic pattern of modelling the subtypes of welding

processes using Metal-Inert-Gas (MIG) welding as an example. MIGWelding heats the base metals

using an electric arc produced by a consumable wire electrode at the mating boundary. The base metals

are melted along with the electrode which provides the filler metal, all of which then solidifies to

produce the joint. A continuous stream of inert gas, dispensed by the welding torch shields the joint

from oxidation and contamination. MIGWelding is inferred as a type of ArcWelding because its

specification is inferred as a subclass of the specification of ArcWelding. ArcWelding is inferred as a

type of FusionWelding because its specification is inferred as a subclass of the specification of

FusionWelding, in turn, and being subsumed by WeldingProcess, ultimately. The subsumptions among

the PlanSpecifications (e.g., MIGWeldingSpecification, ArcWeldingSpecification,

FusionWeldingSpecification) are inferred based on the subsumptions among the different

ActionSpecification(s) that are declared as part of them. For example, ArcWeldingSpecification is a

subclass of FusionWeldingSpecification as one of the action specification parts, HeatingByArcAction,

is subsumed by HeatingAction. Again, these ActionSpecification(s) are inferred as subclasses of each

other because of the different types of heating processes, along with associated patients, agents, and

instruments, that they prescribe. For example, the heating process for the HeatingAction, specific to the

MIGWelding uses some SolidWireElectrode which is a part of MIGWeldingTorch as an instrument.

Needless to mention that different types of melting, solidification, and shielding mechanisms are also

taken into account along with the heating in inferring the subsumptions. In this way, the inference of

subsumption among welding processes traces back to the details of the underlying processes, their

order, and the resources engaged in them. The inference route is shown in Figure 1.

However, most of the welding processes are fusion type as defined in Def. 12, cold welding process

does not melt the base metals but uses pressure to deform the components to make a joint. Similar to

MIG welding, other welding processes are also classified based on the type of Heating process,

primarily based on how the components are heated at the mating boundary. Six types of such heating

strategies are available, e.g., electric arc, resistance, thermochemical, pressure, radiation (laser and

electron beam), and convection, which are applied to perform ArcWelding, ThermoChemicalWelding,

SolidStateWelding, Laser Beam Welding (LBW), Electron Beam Welding (EBW), and

ThermoplasticWelding. In the second level, every type of welding is performed by a specially designed

welding machine (hasInstrument as differentia as in Def. 7). In the third level, some welding operation

uses filler metal while others do not.

Figure 1: Taxonomic position of MIGWelding inferred based on underlying process specifications

Most of the sub-types of brazing and soldering processes can be classified similarly by primary

methods as differentia, which are all some type of heating process, differentiated either by their source

of energy, e.g., infrared, induction, resistance, or gas. Using the subtypes of primary methods, brazing

can be classified into InfraredBrazing, InductionBrazing, ResistanceBrazing, and GasBrazing. Similar

classification can be performed for soldering too. Another type of differentiae for both brazing and

soldering is the environment in which the primary method takes place, similar to the treatment of

shielding mechanism in welding. The environment for both FurnaceBrazing and FurnaceSoldering is

a furnace and for both DipBrazing and DipSoldering is a bath of molten chemical or alloy covered with

a suitable flux. Inference routes similar to MIGWelding can be derived for each subclass relationship

that forms the taxonomy of brazing processes, but not given here due to the limitation of the length of

this paper.

The taxonomy of both bonding and fastening may be derived only based on the type of connectors

used. These connectors are subtypes of Fastener, which is the patient for the InsertingFastener process

in Def. 15, and Adhesive, which is the patient for the ApplyingAdhesive process in Def. 16. Taxonomy

of various types of bonding may be defined based on the subtypes of Adhesive, e.g., Anaerobic,

Cyanoacrylate, Emulsion, EpoxyResin, HotMelt, Phenolic, Polyurethane, SolventBornRubber, Tape,

and Polyimide. Similarly, the taxonomy of fastening operations may be inferred based on subtypes of

fasteners, e.g., Rivet, Flange, Stake, Staple, Nail, Screw, Pin, RetainingRing, AnchorBolt, and many

more. Along with the types of connectors, different types of fasteners also demand different types of

tools, especially some specialized instruments for SecuringFastener process, e.g., nailing needs a

hammer. The complete taxonomy of all joining processes is given in Figure 2.

Figure 2: Complete taxonomy (inferred) of joining processes

The taxonomy of joining operations derived by reasoning may be compared with some benchmarks

for validity. The taxonomy of joining operations in the handbook by Swift and Booker [23] agrees with

the taxonomy in Figure 2, however, some detailed joining operations may be missing as our taxonomy

stops at a higher level sometimes. The most important difference is that our taxonomy does not capture

the distinction between permanent, semi-permanent, and non-permanent joining processes. In our

model, most of the semi-permanent and non-permanent joining processes are classified as fitting and

permanent joining processes as fastening.

5. Conclusion

In this paper, a set of definitions for manufacturing joining operations are provided based on

foundational ontology concepts. The formulations of these definitions are derived from an in-depth

analysis of the characteristics of joining operations. Finally, an OWL-based rendition of the model is

built. Various types of joining operations are defined based on the model and a taxonomy is

automatically derived by inference. In future efforts, a detailed account of the capabilities of the joining

processes will be investigated including the geometry of the joint, materials of the input components,

the thickness of the sheet they support, various costs incurred, level of operator’s skill needed, and joint

qualities, e.g., surface finish, fabrication tolerance, and distortion.

6. Acknowledgements

This research was partially financed by the OntoCommons project funded by the European Union’s

Horizon 2020 research and innovation programme under Grant Agreement no. 958371.

7. References

[1] D. Sormaz and A. Sarkar, “Distributed Integration of Design and Planning Activities in

Manufacturing using Intelligent Agents,” in TMCE, 2014, pp. 19–23.

[2] A. Sarkar, “Semantic Agent Based Process Planning for Distributed Cloud Manufacturing.”

2020, Accessed: Dec. 16, 2020. [Online]. Available:

http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1578585210407386.

[3] X. Xu, “From cloud computing to cloud manufacturing,” Robot. Comput. Integr. Manuf., vol.

28, no. 1, pp. 75–86, 2012, doi: 10.1016/j.rcim.2011.07.002.

[4] T. Hofweber, “Logic and ontology,” The Stanford Encyclopedia of Philosophy, 2021.

https://plato.stanford.edu/archives/spr2021/entries/logic-ontology/.

[5] M. M. Baysal, U. Roy, R. Sudarsan, R. D. Sriram, and K. W. Lyons, “The Open Assembly

Model for the Exchange of Assembly and Tolerance Information: Overview and Example,”

2004, vol. 2004, pp. 759–770, doi: 10.1115/DETC2004-57727.

[6] X. Fiorentini, I. Gambino, V.-C. Liang, S. Rachuri, M. Mani, and C. Bock, “An Ontology for

Assembly Representation,” National Institute of Standard and Technology, 2007. .

[7] S. J. Fenves, S. Foufou, C. Bock, and R. D. Sriram, “CPM2: A Core Model for Product Data,”

J. Comput. Inf. Sci. Eng., vol. 8, no. 1, pp. 014501–014501, 2008, doi: 10.1115/1.2830842.

[8] K.-Y. Kim, D. G. Manley, and H. Yang, “Ontology-based assembly design and information

sharing for collaborative product development,” Comput. Des., vol. 38, no. 12, pp. 1233–1250,

2006, doi: 10.1016/j.cad.2006.08.004.

[9] K. Y. Kim, “Ontology and assembly joint topology representation,” Comput. Aided. Des. Appl.,

vol. 5, no. 5, pp. 630–638, 2008, doi: 10.3722/cadaps.2008.630-638.

[10] E. Gruhier, “Spatiotemporal description and modeling of mechanical product and its assembly

sequence based on mereotopology : theory, model and approach,” Http://Www.Theses.Fr, 2015,

[Online]. Available: https://www.theses.fr/2015BELF0276.

[11] L. Solano, “Ontological modelling of welding processes,” IOP Conf. Ser. Mater. Sci. Eng., vol.

1193, no. 1, p. 012019, Oct. 2021, doi: 10.1088/1757-899X/1193/1/012019.

[12] S. Saha, Z. Usman, W. D. Li, S. Jones, and N. Shah, “Core domain ontology for joining

processes to consolidate welding standards,” Robot. Comput. Integr. Manuf., vol. 59, no. May,

pp. 417–430, 2019, doi: 10.1016/j.rcim.2019.05.010.

[13] M. Molhanec, O. Zhuravskaya, E. Povolotskaya, and L. Tarba, “The ontology based FMEA of

lead free soldering process,” Proc. Int. Spring Semin. Electron. Technol., no. April 2014, pp.

267–273, 2011, doi: 10.1109/ISSE.2011.6053871.

[14] R. Arp, B. Smith, and A. D. Spear, “Introduction to Basic Formal Ontology II: Occurrents,” in

Building Ontologies With Basic Formal Ontology, no. June 2017, The MIT Press, 2015, pp. 1–

9.

[15] B. Smith et al., “A first-order logic formalization of the industrial ontologies foundry signature

using basic formal ontology,” CEUR Workshop Proc., vol. 2518, no. October, 2019.

[16] B. Smith, “Mereotopology: A theory of parts and boundaries,” Data Knowl. Eng., vol. 20, no.

3, pp. 287–303, 1996, doi: 10.1016/S0169-023X(96)00015-8.

[17] R. Casati and A. C. Varzi, Parts and Places : the structures of spatial representation.

Cambridge, Mass.: MIT Press, 1999.

[18] K. G. Swift and J. D. Booker, Manufacturing Process Selection Handbook. Oxford:

Butterworth-Heinemann, 2013.

[19] B. Lotter, “Manufacturing Assembly Handbook,” B. Lotter, Ed. Butterworth-Heinemann, 1986.

[20] F. Demoly, A. Matsokis, and D. Kiritsis, “A mereotopological product relationship description

approach for assembly oriented design,” Robot. Comput. Integr. Manuf., vol. 28, no. 6, pp. 681–

693, Dec. 2012, doi: 10.1016/j.rcim.2012.03.003.

[21] C. Bonial, W. Corvey, M. Palmer, V. V. Petukhova, and H. Bunt, “A Hierarchical Unification

of LIRICS and VerbNet Semantic Roles,” in 2011 IEEE Fifth International Conference on

Semantic Computing, Sep. 2011, pp. 483–489, doi: 10.1109/ICSC.2011.57.

[22] A. C. Varzi, “Mereology,” The Stanford Encyclopedia of Philosophy, 2019. .

[23] K. G. Swift and J. D. Booker, “Chapter 1 - Introduction to the Handbook,” in Manufacturing

Process Selection Handbook, K. G. Swift and J. D. Booker, Eds. Oxford: Butterworth-

Heinemann, 2013, pp. 1–20.

